10 research outputs found

    Wearable Cardiorespiratory Monitoring Employing a Multimodal Digital Patch Stethoscope: Estimation of ECG, PEP, LVET and Respiration Using a 55 mm Single-Lead ECG and Phonocardiogram

    Get PDF
    Cardiovascular diseases are the main cause of death worldwide, with sleep disordered breathing being a further aggravating factor. Respiratory illnesses are the third leading cause of death amongst the noncommunicable diseases. The current COVID-19 pandemic, however, also highlights the impact of communicable respiratory syndromes. In the clinical routine, prolonged postanesthetic respiratory instability worsens the patient outcome. Even though early and continuous, long-term cardiorespiratory monitoring has been proposed or even proven to be beneficial in several situations, implementations thereof are sparse. We employed our recently presented, multimodal patch stethoscope to estimate Einthoven electrocardiogram (ECG) Lead I and II from a single 55 mm ECG lead. Using the stethoscope and ECG subsystems, the pre-ejection period (PEP) and left ventricular ejection time (LVET) were estimated. ECG-derived respiration techniques were used in conjunction with a novel, phonocardiogram-derived respiration approach to extract respiratory parameters. Medical-grade references were the SOMNOmedics SOMNO HDTM and Osypka ICON-CoreTM. In a study including 10 healthy subjects, we analyzed the performances in the supine, lateral, and prone position. Einthoven I and II estimations yielded correlations exceeding 0.97. LVET and PEP estimation errors were 10% and 21%, respectively. Respiratory rates were estimated with mean absolute errors below 1.2 bpm, and the respiratory signal yielded a correlation of 0.66. We conclude that the estimation of ECG, PEP, LVET, and respiratory parameters is feasible using a wearable, multimodal acquisition device and encourage further research in multimodal signal fusion for respiratory signal estimation.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Detection of a stroke volume decrease by machine-learning algorithms based on thoracic bioimpedance in experimental hypovolaemia

    Get PDF
    Compensated shock and hypovolaemia are frequent conditions that remain clinically undetected and can quickly cause deterioration of perioperative and critically ill patients. Automated, accurate and non-invasive detection methods are needed to avoid such critical situations. In this experimental study, we aimed to create a prediction model for stroke volume index (SVI) decrease based on electrical cardiometry (EC) measurements. Transthoracic echo served as reference for SVI assessment (SVI-TTE). In 30 healthy male volunteers, central hypovolaemia was simulated using a lower body negative pressure (LBNP) chamber. A machine-learning algorithm based on variables of EC was designed. During LBNP, SVI-TTE declined consecutively, whereas the vital signs (arterial pressures and heart rate) remained within normal ranges. Compared to heart rate (AUC: 0.83 (95% CI: 0.73–0.87)) and systolic arterial pressure (AUC: 0.82 (95% CI: 0.74–0.85)), a model integrating EC variables (AUC: 0.91 (0.83–0.94)) showed a superior ability to predict a decrease in SVI-TTE ≥ 20% (p = 0.013 compared to heart rate, and p = 0.002 compared to systolic blood pressure). Simulated central hypovolaemia was related to a substantial decline in SVI-TTE but only minor changes in vital signs. A model of EC variables based on machine-learning algorithms showed high predictive power to detect a relevant decrease in SVI and may provide an automated, non-invasive method to indicate hypovolaemia and compensated shock

    Dual-Lead 55 mm Impedance Pneumography

    No full text
    In recent years, respiratory monitoring has gained attention due to the high prevalence and severe consequences of sleep apnea, post-anesthesia respiratory instability and respiratory diseases. Nevertheless, respiratory monitoring oftentimes relies on obtrusive masks and belts, which are unsuitable for wearable, long-term monitoring. Impedance pneumography (IP) is a bioimpedance method aiming to assess respiratory parameters unobtrusively. However, most IP configurations require far-spaced electrodes. Based on our recent work on wearable IP, we propose a dual-lead, wearable IP setup with 55 mm electrode spacing to estimate respiratory flow and rate (RR). Using our recently presented multimodal patch stethoscope as well as commercial systems, we conducted a study including 10 healthy subjects which were recorded in the supine, lateral and prone position. Using time-delay neural networks, we achieved RR estimation errors below 0.6 breaths per minute and flow correlations of 0.88 with relative errors of 25 % to a pneumotachometer reference. We conclude that dual-lead IP increases the performance of respiratory signal estimation compared to a single lead and recommend research in the area of subject position dependency and movement artefacts

    Wearable Impedance Pneumography

    No full text
    Respiratory diseases are a leading cause of death worldwide. The prevalence of sleep apnea, its cardiovascular consequences, postoperative respiratory instability and severe respiratory syndromes further highlight the importance of respiratory monitoring. Typical methods, however, rely on obtrusive nasal cannulas and belts. Impedance pneumography (IP) is a promising bioimpedance application which aims to estimate respiratory parameters from the thorax impedance. Currently, IP configurations require large inter-electrode distances, diminishing its applicability in a wearable context. We propose an IP configuration with 55 mm spacing using our recently presented sensor patch. In a study including 10 healthy subjects, respiratory rate (RR) and flow are estimated in the supine, lateral and prone position. Using time-delay neural network regression, RR errors below 1 bpm, flow correlations of 0.81 and relative flow errors of 38 % with respect to a pneumotachometer reference were achieved. We conclude that high accuracy RR estimation is possible in a 55 mm IP configuration. Respiratory flow can be roughly estimated. Further research combining several biosignals for a more robust, wearable flow estimation is recommended

    Progressive Dynamic Time Warping for Noninvasive Blood Pressure Estimation

    No full text
    Arterial blood pressure is one of the most important cardiovascular parameters. Yet, current-generation devices for continuous, noninvasive acquisition are few, expensive and bulky. Novel signal processing applied to easily acquired unimodal signals can alleviate this issue, reducing size, cost and expanding the use of such devices to ambulatory, everyday settings. The features of pulse waves acquired by photo- or impedance-plethysmography can be used to estimate the underlying blood pressure. We present a progressive dynamic time warping algorithm, which implicitly parametrizes the morphological changes in these waves. This warping method is universally applicable to most pulse wave shapes, as it is largely independent of fiducial point detection or explicit parametrization. The algorithm performance is validated in a feature selection and regression framework against a continuous, noninvasive Finapres NOVA monitor, regarding systolic, mean and diastolic pressures during a light physical strain test protocol on four clinically healthy subjects (age18- 33, one female). The obtained mean error is 2.13 mmHg, the mean absolute error is 5.4 mmHg and the standard deviation is 5.6 mmHg. These results improve on our previous work on dynamic time warping. Using single-sensor, peripherally acquired pulse waves, progressive dynamic time warping can thus improve the flexibility of noninvasive, continuous blood pressure estimation

    Minimally spaced electrode positions for multi-functional chest sensors: ECG and respiratory signal estimation

    No full text
    Unobtrusive medical instrumentation is a key in continuous patient monitoring. To increase compliance, multi-functional sensor concepts and measurement sites different from gold-standards are used. In this work, we aim to combine both approaches. We focus on minimally spaced electrode positions with high signal correlations to gold-standards. We present twofold experimental data from six and eleven healthy volunteers and provide chest positions with individual correlations up to 0.83 ± 0.06 for ECG and 0.73 ± 0.28 for the respiratory frequency. Using a performance index, we assess positions with correlations up to 0.77 ± 0.12 for ECG and 0.65 ± 0.35 for the respiratory frequency with 24 mm electrode distance

    GRU Neural Network Improved Bioimpedance Based Stroke Volume Estimation during Ergometry Stress Test

    No full text
    Cardiovascular diseases (CVDs) are one of the leading members of non-communicable diseases. An early diagnosis is essential for effective treatment, to reduce hospitalization time and health care costs. Nowadays, an exercise stress test on an ergometer is used to identify CVDs. To improve the accuracy of diagnostics, the hemodynamic status and parameters of a person can be investigated. For hemodynamic management, thoracic electrical bioimpedance has recently been used. This technique offers beat-to-beat stroke volume calculation but suffers from an artifact-sensitive signal that makes such measurements difficult during movement. We propose a new method based on a gated recurrent unit (GRU) neural network and the ECG signal to improve the measurement of bioimpedance signals, reduce artifacts and calculate hemodynamic parameters. We conducted a study with 23 subjects. The new approach is compared to ensemble averaging, scaled Fourier linear combiner, adaptive filter, and simple neural networks. The GRU neural network performs better with single artifact events than shallow neural networks (mean error −0.0244, mean square error 0.0181 for normalized stroke volume). The GRU network is superior to other algorithms using time-correlated data for the exercise stress test

    Perioperative advanced haemodynamic monitoring of patients undergoing multivisceral debulking surgery: an observational pilot study

    No full text
    Abstract Background Patients undergoing high-risk surgery show haemodynamic instability and an increased risk of morbidity. However, most of the available data concentrate on the intraoperative period. This study aims to characterise patients with advanced haemodynamic monitoring throughout the whole perioperative period using electrical cardiometry. Methods In a prospective, observational, monocentric pilot study, electrical cardiometry measurements were obtained using an Osypka ICON™ monitor before surgery, during surgery, and repeatedly throughout the hospital stay for 30 patients with primary ovarian cancer undergoing multivisceral cytoreductive surgery. Severe postoperative complications according to the Clavien–Dindo classification were used as a grouping criterion. Results The relative change from the baseline to the first intraoperative timepoint showed a reduced heart rate (HR, median – 19 [25-quartile − 26%; 75-quartile − 10%]%, p < 0.0001), stroke volume index (SVI, − 9.5 [− 15.3; 3.2]%, p = 0.0038), cardiac index (CI, − 24.5 [− 32; − 13]%, p < 0.0001) and index of contractility (− 17.5 [− 35.3; − 0.8]%, p < 0.0001). Throughout the perioperative course, patients had intraoperatively a reduced HR and CI (both p < 0.0001) and postoperatively an increased HR (p < 0.0001) and CI (p = 0.016), whereas SVI was unchanged. Thoracic fluid volume increased continuously versus preoperative values and did not normalise up to the day of discharge. Patients having postoperative complications showed a lower index of contractility (p = 0.0435) and a higher systolic time ratio (p = 0.0008) over the perioperative course in comparison to patients without complications, whereas the CI (p = 0.3337) was comparable between groups. One patient had to be excluded from data analysis for not receiving the planned surgery. Conclusions Substantial decreases in HR, SVI, CI, and index of contractility occurred from the day before surgery to the first intraoperative timepoint. HR and CI were altered throughout the perioperative course. Patients with postoperative complications differed from patients without complications in the markers of cardiac function, a lower index of contractility and a lower SVI. The analyses of trends over the whole perioperative time course by using non-invasive technologies like EC seem to be useful to identify patients with altered haemodynamic parameters and therefore at an increased risk for postoperative complications after major surgery
    corecore